Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Dihydroxybenzaldehyde 4-phenylthiosemicarbazone

Kong Wai Tan,^a Yang Farina,^b Chew Hee Ng,^c* Mohd Jamil Maah^d and Seik Weng Ng^d

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^bSchool of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, ^cFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 30 April 2008; accepted 6 May 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.115; data-to-parameter ratio = 15.9.

Molecules of the title compound, $C_{14}H_{13}N_3O_2S$, are linked by intermolecular O-H···O hydrogen bonds into centrosymmetric dimers forming $R_2^2(4)$ rings which are further linked by $O-H \cdots S$ hydrogen bonds and weaker $N-H \cdots S$ and N- $H \cdots O$ hydrogen bonds to form a three-dimensional network.

Related literature

For the structure of 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate, see: Swesi et al. (2006). For metal derivatives of the title compound, see: Zhu et al. (1997). The graph-set notation is given by Bernstein et al. (1995).

Experimental

Crystal data

C14H13N3O2S $M_r = 287.33$ Monoclinic, $P2_1/c$ a = 9.7261 (2) Å b = 13.1863 (3) Å c = 10.7732 (3) Å $\beta = 99.055 \ (2)^{\circ}$

V = 1364.46 (6) Å³ Z = 4Mo Ka radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 100 (2) K

$0.40 \times 0.30 \times 0.20 \ \mathrm{mm}$

Data collection

```
Bruker SMART APEX
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\rm min} = 0.909, T_{\rm max} = 0.953
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H
$wR(F^2) = 0.115$	
S = 1.04	
3132 reflections	4
197 parameters	4
4 restraints	

16724 measured reflections 3132 independent reflections 2358 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.078$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$O1 - H1o \cdots O2^{i}$	0.85 (1)	2.03 (2)	2.737 (2)	141 (2)
$O2-H2o\cdots S1^{ii}$	0.85 (1)	2.34 (1)	3.134 (1)	156 (2)
$N2-H2n\cdots S1^{iii}$	0.85 (1)	2.73 (1)	3.487 (2)	150 (2)
$N2 - H2n \cdots O1^{iv}$	0.85 (1)	2.56 (2)	3.022 (2)	115 (2)
				1 1

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2};$ (iii) -x + 2, -y, -z + 1; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the University of Malaya (P0265/2007 A) for supporting this study; KWT thanks the Ministry of Higher Education for an SLAI scholarship in this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2625).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, 05457-05458
- Westrip, S. P. (2008). publCIF. In preparation.
- Zhu, X. D., Wang, G. C., Lu, Z. P. & Li, Y. L. (1997). Transition Met. Chem. 22, 9-13.

supplementary materials

Acta Cryst. (2008). E64, o1035 [doi:10.1107/S1600536808013287]

3,4-Dihydroxybenzaldehyde 4-phenylthiosemicarbazone

K. W. Tan, Y. Farina, C. H. Ng, M. J. Maah and S. W. Ng

Comment

A previous study of the Schiff bases derived by condensing substituted benzaldehydes with 4-phenylthiosemicarbazides reported the 2,3-dihydroxy compound, which crystallizes as a hemihydrate. The compound features extensive hydrogen bond (Swesi *et al.*, 2006). In the title 3,4-dihydroxy isomer the 4-hydroxy group functions as hydrogen-bond donor to the 3-hydroxy group of a symmetry-related molecule forming $R_2^2(4)$ rings (Bernstein *et al.*, 1995). In addition, the 3-hydroxy group is a donor to the sulfur atom of another molecule; the hydrogen bonding arrangement furnishes a three-dimensional network motif. The amino groups are involved in weaker hydrogen bond interactions.

Further work will investigate the formation of metal deratives of the ligand; some metal complexes have been reported by others but these have not characterized by crystallography yet (Zhu *et al.*, 1997).

Experimental

4-Phenylthiosemicarbazide (0.17 g, 1 mmol) and 3,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (20 ml) for 3 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 $U_{eq}(C)$. The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with a distance retraint of O–H = N–H = 0.85±0.01 Å; their temperature factors were similarly tied.

Figures

Fig. 1. Thermal ellipsoid (Barbour, 2001) plot of $C_{14}H_{13}N_3O_2S$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

3,4-Dihydroxybenzaldehyde 4-phenylthiosemicarbazone

Crystal data	
$C_{14}H_{13}N_3O_2S$	$F_{000} = 600$
$M_r = 287.33$	$D_{\rm x} = 1.399 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: -P 2ybc a = 9.7261 (2) Å b = 13.1863 (3) Å c = 10.7732 (3) Å $\beta = 99.055 \ (2)^{\circ}$ V = 1364.46 (6) Z = 4

Data collection Bruker SMART

$\beta = 99.055 \ (2)^{\circ}$	Block, yellow
V = 1364.46 (6) Å ³	$0.40 \times 0.30 \times 0.20 \text{ mm}$
<i>Z</i> = 4	
Data collection	
Bruker SMART APEX diffractometer	3132 independent reflections
Radiation source: fine-focus sealed tube	2358 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.078$
T = 100(2) K	$\theta_{\rm max} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: Multi-scan	1 12 12

Cell parameters from 2291 reflections

 $\theta = 2.5 - 23.4^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$ T = 100 (2) K

 $h = -12 \rightarrow 12$

 $k = -17 \rightarrow 16$

 $l = -13 \rightarrow 13$

$T_{\min} = 0.910, T_{\max} = 0.953$
16724 measured reflections

(SADABS; Sheldrick, 1996)

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 0.2883P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
3132 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
197 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

											. 7
Fractional	atomic	coordinates	and i	isatronic d	or e	eauivalent	isotronic	displace	pmpnt	narameters	(A^2)
1 / actionat	aiomic	coordinates	unu i	souopie	, ,	guivaieni	isonopie	anspiace	meni	parameters	(11)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	1.08441 (5)	0.12769 (4)	0.40212 (5)	0.02006 (15)
O1	0.65919 (15)	0.45705 (10)	0.89678 (14)	0.0221 (3)
O2	0.40955 (14)	0.39195 (11)	0.94986 (14)	0.0231 (3)
N1	0.83208 (16)	0.18905 (12)	0.63925 (15)	0.0187 (4)
N2	0.90695 (16)	0.13520 (12)	0.56294 (16)	0.0185 (4)
N3	1.03542 (19)	0.27810 (13)	0.55853 (18)	0.0258 (4)
C1	0.64419 (19)	0.20682 (14)	0.75172 (18)	0.0172 (4)
C2	0.6914 (2)	0.30261 (14)	0.79586 (18)	0.0177 (4)

H2	0.7798	0.3262	0.7814	0.021*
C3	0.61093 (19)	0.36257 (14)	0.85974 (18)	0.0168 (4)
C4	0.48283 (19)	0.32692 (15)	0.88517 (18)	0.0175 (4)
C5	0.4360 (2)	0.23207 (15)	0.84415 (19)	0.0207 (4)
Н5	0.3492	0.2077	0.8620	0.025*
C6	0.5160 (2)	0.17194 (15)	0.77643 (19)	0.0204 (4)
H6	0.4831	0.1071	0.7471	0.024*
C7	0.72652 (19)	0.14733 (15)	0.67561 (19)	0.0190 (4)
H7	0.7022	0.0792	0.6536	0.023*
C8	1.00702 (19)	0.18502 (14)	0.51400 (19)	0.0177 (4)
C9	1.1227 (2)	0.35150 (15)	0.5122 (2)	0.0212 (4)
C10	1.2393 (2)	0.38550 (18)	0.5909 (2)	0.0304 (5)
H10	1.2651	0.3565	0.6719	0.037*
C11	1.3183 (3)	0.4624 (2)	0.5504 (2)	0.0386 (6)
H11	1.3986	0.4863	0.6042	0.046*
C12	1.2821 (2)	0.50451 (18)	0.4336 (2)	0.0339 (6)
H12	1.3366	0.5576	0.4070	0.041*
C13	1.1657 (2)	0.46947 (18)	0.3545 (2)	0.0348 (6)
H13	1.1410	0.4977	0.2729	0.042*
C14	1.0858 (2)	0.39327 (17)	0.3946 (2)	0.0287 (5)
H14	1.0053	0.3696	0.3410	0.034*
H1O	0.602 (2)	0.4875 (17)	0.935 (2)	0.035 (7)*
H2O	0.3276 (14)	0.3698 (18)	0.950 (3)	0.043 (8)*
H2N	0.890 (2)	0.0737 (9)	0.542 (2)	0.036 (7)*
H3N	0.995 (2)	0.2960 (17)	0.6187 (16)	0.027 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0175 (2)	0.0195 (3)	0.0249 (3)	0.00003 (19)	0.00859 (19)	-0.0035 (2)
01	0.0209 (7)	0.0162 (7)	0.0316 (9)	-0.0015 (6)	0.0116 (6)	-0.0063 (6)
O2	0.0158 (7)	0.0226 (8)	0.0328 (9)	-0.0011 (6)	0.0093 (6)	-0.0075 (6)
N1	0.0181 (8)	0.0188 (9)	0.0207 (9)	0.0021 (7)	0.0081 (7)	-0.0017 (7)
N2	0.0173 (8)	0.0148 (9)	0.0250 (9)	-0.0013 (7)	0.0086 (7)	-0.0043 (7)
N3	0.0313 (10)	0.0202 (9)	0.0310 (11)	-0.0081 (8)	0.0202 (8)	-0.0076 (8)
C1	0.0159 (9)	0.0187 (10)	0.0178 (10)	-0.0003 (7)	0.0048 (8)	-0.0011 (8)
C2	0.0146 (9)	0.0178 (10)	0.0216 (10)	-0.0011 (7)	0.0056 (8)	-0.0001 (8)
C3	0.0169 (9)	0.0148 (10)	0.0184 (10)	-0.0004 (7)	0.0016 (7)	0.0000(7)
C4	0.0148 (9)	0.0204 (10)	0.0183 (10)	0.0026 (7)	0.0052 (7)	-0.0008 (8)
C5	0.0141 (9)	0.0206 (10)	0.0285 (12)	-0.0020 (8)	0.0064 (8)	-0.0007 (8)
C6	0.0199 (10)	0.0175 (10)	0.0246 (11)	-0.0030 (8)	0.0061 (8)	-0.0026 (8)
C7	0.0185 (10)	0.0168 (10)	0.0223 (11)	-0.0018 (8)	0.0054 (8)	-0.0027 (8)
C8	0.0145 (9)	0.0167 (10)	0.0224 (10)	0.0011 (7)	0.0046 (8)	-0.0002 (8)
C9	0.0204 (10)	0.0170 (10)	0.0287 (12)	-0.0037 (8)	0.0114 (8)	-0.0041 (8)
C10	0.0317 (12)	0.0345 (13)	0.0248 (12)	-0.0058 (10)	0.0034 (9)	0.0012 (10)
C11	0.0328 (13)	0.0442 (15)	0.0381 (15)	-0.0193 (11)	0.0032 (11)	-0.0047 (11)
C12	0.0323 (13)	0.0250 (12)	0.0474 (16)	-0.0093 (10)	0.0155 (11)	0.0037 (11)
C13	0.0336 (13)	0.0312 (13)	0.0396 (15)	0.0016 (10)	0.0059 (11)	0.0148 (11)

supplementary materials

C14	0.0211 (10)	0.0310 (12)	0.0328 (13)	-0.0033 (9)	0.0011 (9)	0.0030 (10)
Geometric para	meters (Å, °)					
S1—C8		1.696 (2)	C3—	C4		1.398 (3)
O1—C3		1.368 (2)	C4—	C5		1.380 (3)
01—H10		0.85 (1)	C5—	C6		1.395 (3)
O2—C4		1.373 (2)	C5—	H5		0.9500
O2—H2O		0.85 (1)	C6—	H6		0.9500
N1—C7		1.279 (2)	С7—	H7		0.9500
N1—N2		1.378 (2)	С9—	C14		1.376 (3)
N2—C8		1.348 (2)	С9—	C10		1.380 (3)
N2—H2N		0.85 (1)	C10–	-C11		1.383 (3)
N3—C8		1.331 (3)	C10-	-H10		0.9500
N3—C9		1.428 (3)	C11–	-C12		1.370 (3)
N3—H3N		0.84 (1)	C11–	-H11		0.9500
C1—C6		1.393 (3)	C12-	-C13		1.385 (3)
C1—C2		1.401 (3)	C12-	-H12		0.9500
C1—C7		1.461 (3)	C13–	-C14		1.381 (3)
C2—C3		1.372 (3)	C13–	-H13		0.9500
С2—Н2		0.9500	C14-	-H14		0.9500
C3—O1—H1O		110.7 (17)	С5—	С6—Н6		119.9
C4—O2—H2O		110.6 (18)	N1—	C7—C1		118.55 (17)
C7—N1—N2		119.07 (16)	N1—	С7—Н7		120.7
C8—N2—N1		117.64 (16)	C1—	С7—Н7		120.7
C8—N2—H2N		119.3 (17)	N3—	C8—N2		115.47 (17)
N1—N2—H2N		123.0 (17)	N3—	C8—S1		125.24 (15)
C8—N3—C9		126.89 (17)	N2—	C8—S1		119.28 (15)
C8—N3—H3N		116.2 (16)	C14-	-C9C10		120.35 (19)
C9—N3—H3N		116.9 (16)	C14-	-C9-N3		120.67 (19)
C6—C1—C2		119.21 (17)	C10–	-C9-N3		118.8 (2)
C6—C1—C7		121.05 (18)	С9—	C10—C11		119.2 (2)
C2—C1—C7		119.68 (17)	С9—	С10—Н10		120.4
C3—C2—C1		120.50 (17)	C11–	-С10—Н10		120.4
С3—С2—Н2		119.7	C12-	-C11C10		120.8 (2)
C1—C2—H2		119.7	C12-	-C11—H11		119.6
O1—C3—C2		118.33 (17)	C10–	-C11—H11		119.6
O1—C3—C4		121.62 (17)	C11–	-C12C13		119.8 (2)
C2—C3—C4		120.06 (17)	C11–	-C12—H12		120.1
O2—C4—C5		123.84 (17)	C13–	-C12—H12		120.1
O2—C4—C3		116.05 (17)	C14–	-C13C12		119.7 (2)
C5—C4—C3		120.10 (18)	C14–	-С13—Н13		120.1
C4—C5—C6		119.95 (18)	C12–	-C13—H13		120.1
C4—C5—H5		120.0	C9—	C14—C13		120.1 (2)
C6—C5—H5		120.0	C9—	U14—H14		119.9
CI-C6-C5		120.14 (18)	C13–	-C14—H14		119.9
C1—C6—H6		119.9				
C7—N1—N2—C	28	172.24 (18)	C2—	C1—C7—N1		-7.8 (3)
C6—C1—C2—C	3	-1.7 (3)	C9—	N3—C8—N2		-171.35 (19)

175.33 (18)	C9—N3—C8—S1	7.8 (3)
-177.55 (17)	N1—N2—C8—N3	8.7 (3)
2.2 (3)	N1—N2—C8—S1	-170.51 (13)
-0.4 (3)	C8—N3—C9—C14	66.2 (3)
179.82 (17)	C8—N3—C9—C10	-118.6 (2)
178.64 (18)	C14—C9—C10—C11	0.3 (3)
-1.1 (3)	N3-C9-C10-C11	-174.9 (2)
178.51 (18)	C9-C10-C11-C12	-0.2 (4)
-0.5 (3)	C10-C11-C12-C13	-0.5 (4)
0.1 (3)	C11-C12-C13-C14	1.0 (4)
-176.89 (18)	C10-C9-C14-C13	0.1 (3)
1.0 (3)	N3-C9-C14-C13	175.3 (2)
-177.22 (16)	C12—C13—C14—C9	-0.8 (4)
169.23 (19)		
	$\begin{array}{c} 175.33\ (18)\\ -177.55\ (17)\\ 2.2\ (3)\\ -0.4\ (3)\\ 179.82\ (17)\\ 178.64\ (18)\\ -1.1\ (3)\\ 178.51\ (18)\\ -0.5\ (3)\\ 0.1\ (3)\\ -176.89\ (18)\\ 1.0\ (3)\\ -177.22\ (16)\\ 169.23\ (19)\\ \end{array}$	175.33 (18) $C9-N3-C8-S1$ $-177.55 (17)$ $N1-N2-C8-N3$ $2.2 (3)$ $N1-N2-C8-S1$ $-0.4 (3)$ $C8-N3-C9-C14$ $179.82 (17)$ $C8-N3-C9-C10$ $178.64 (18)$ $C14-C9-C10-C11$ $-1.1 (3)$ $N3-C9-C10-C11$ $178.51 (18)$ $C9-C10-C11-C12$ $-0.5 (3)$ $C11-C12-C13$ $0.1 (3)$ $C10-C9-C14-C13$ $1.0 (3)$ $N3-C9-C14-C13$ $-177.22 (16)$ $C12-C13-C14-C9$ $169.23 (19)$ $C9-C10-C14-C13$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$	
01—H10···O2 ⁱ	0.85 (1)	2.03 (2)	2.737 (2)	141 (2)	
O2—H2O···S1 ⁱⁱ	0.85 (1)	2.34 (1)	3.134 (1)	156 (2)	
N2—H2N…S1 ⁱⁱⁱ	0.85 (1)	2.73 (1)	3.487 (2)	150 (2)	
N2—H2N···O1 ^{iv}	0.85 (1)	2.56 (2)	3.022 (2)	115 (2)	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+2$; (ii) $x-1$, $-y+1/2$, $z+1/2$; (iii) $-x+2$, $-y$, $-z+1$; (iv) x , $-y+1/2$, $z-1/2$.					

